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Abstract—Two new asynchronous modulation techniques for
molecular timing (MT) channels are proposed. One based on
modulating information on the time between two consecutive re-
leases of indistinguishable information particles, and one based on
using distinguishable particles. For comparison, we consider the
synchronized modulation scheme where information is encoded
in the time of release and decoded from the time of arrival of
particles. We show that all three modulation techniques result
in a system that can be modeled as an additive noise channel,
and we derive the expression for the probability density function
of the noise. Next, we focus on binary communication and
derive the associated optimal detection rules for each modulation.
Since the noise associated with these modulations has an infinite
variance, geometric power is used as a measure for the noise
power, and we derive an expression for the geometric SNR
(G-SNR) for each modulation scheme. Numerical evaluations
indicate that for these systems the bit error rate (BER) is
constant at a given G-SNR, similar to the relation between
BER and SNR in additive Gaussian noise channels. We also
demonstrate that the asynchronous modulation based on two
distinguishable particles can achieve a BER performance close to
the synchronized modulation scheme.

Index Terms—Molecular communication, channel models,
noise models, Lévy distribution, stable distributions, bit error
rate, and molecular timing channel.

I. INTRODUCTION

MOLECULAR communication is a biologically inspired
form of communication, where chemical signals are

used to transfer information [3]–[5]. It is possible to modulate
information on the particles using different techniques such as
concentration [6], type, ratio [7], number [8], time of release
[9], or a combination of these techniques [3]. Moreover,
information particles can be transported from the transmitter
to the receiver using diffusion [10], active transport [11],
bacteria [12], and/or flow (or advection) [13]. Between all
these techniques, diffusion and flow-based propagation are the
easiest to implement, and a few experimental platforms have
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been built to demonstrate molecular communication based on
these transport mechanisms [14]–[16].

In this work we focus on modulation techniques for molec-
ular communication and their corresponding system models.
Most prior work on modulation techniques rely on the con-
centration or the type of the released particles. For example
in [17], the order of release of consecutive distinguishable
particles is proposed for encoding information. In this work,
we consider molecular timing (MT) channels where timing-
based modulation is employed. Only a few works have con-
sidered this type of modulation: In [9] the time of release of
the particles is used for encoding information, while in [18]
the information is encoded in the time interval between two
pulse releases of information particles.

The work [19] showed that in the case of timing-based mod-
ulation, where information is encoded on the release timing
of particles, and the transport mechanism is diffusion assisted
by constant laminar flow, the channel can be represented as
an additive noise channel. In this case the noise term follows
the inverse Gaussian (IG) distribution. Capacity bounds for the
additive IG noise channel, in bits per channel use, under an
average delay constraint, were derived in [19], [20]. In [1], we
have shown that in the case of timing-based modulation, where
information is encoded on the release timing of particles, and
pure diffusive transport (i.e., diffusion without any flow) is
employed, the channel can be represented as an additive noise
channel where the noise follows the Lévy distribution. The
capacity of this channel was studied in [21]–[24], and it was
shown that this capacity can increase poly-logarithmically with
respect to the number of simultaneously released particles. A
sequence detector for this modulation scheme was presented
in [25].

In this work, we propose two asynchronous timing-based
modulation techniques and compare them with the synchro-
nized timing modulation considered in prior work. These
systems can be represented by an additive noise channel, and
for diffusion-based MT (DBMT) systems the noise falls in
the stable distribution family [26]. Specifically, we consider
a synchronized MT system, where information is encoded
in the release timing of information particles (system A); an
asynchronous MT system where information is encoded in the
time between two consecutive releases of indistinguishable
information particles (system B); and another asynchronous
MT system where information is encoded in the time between
two consecutive releases of distinguishable information par-
ticles (system C). Fig. 1 depicts all three systems. One of
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the main motivations for proposing these new modulations
is the challenge of synchronization. In particular, for some
applications involving micro and nano-scale devices, it may
be difficult to synchronize the transmitter and the receiver
due to their small size and limited power. In this case, the
modulation scheme in system A, which has been used in
previous works, may be too difficult to implement in practice.
The newly presented modulation schemes in systems B and
C, however, do not require synchronization between the trans-
mitter and the receiver. These modulations are analogous to
differential phase-shift keying (PSK) in that the asynchronous
MT modulations do not require an absolute time reference,
while the differential PSK does not require an absolute phase
reference.

It must be noted that stable distributed noise arises in system
models for a number of different applications. Therefore, the
results of this paper could also be applicable in those areas.
Specifically, in [27], alpha-stable distributed noise was used
to model room acoustics. In radio communications, symmetric
alpha-stable distributions were used to model impulsive non-
Gaussian noise such as those that exists in ultra-wide band-
width systems [28], [29]. Capacity bounds for a special class
of alpha-stable additive noise channels were provided in [30],
[31].

There are only three classes of stable distributions with
closed-form probability density functions (PDF) in terms of
elementary functions: Gaussian, Cauchy, and Lévy. In this
work, we derive closed-form expressions for the PDFs of the
noise terms in systems B and C in terms of the complex error
function and Voigt functions [32], [33], which are used in other
fields of science such as physics. Thus we develop new closed-
form PDF results for a subclass of stable noise distributions
in terms of the Voigt functions, which can be efficiently
calculated numerically [34], [35], and can be approximated
using elementary functions in some special cases [36].

To compare the performance of the three proposed modula-
tion schemes, we consider a binary communication system
and derive the optimal detection rule for each modulation
technique. Since the system noise in all three cases is heavy-
tailed with infinite variance, the standard definition of signal
power, used in electromagnetic communication, is not suitable.
Instead, we derive the expressions for the geometric power
[37] of a large class of stable distributions, and use it to
represent the noise power. Furthermore, instead of using the
well known signal-to-noise ratio (SNR) metric, we use the
geometric SNR (G-SNR) [37] metric, which is given by the
geometric power of the signal divided by the geometric power
of the noise with some normalization constants. Based on
numerical evaluations we observe that for the modulations
considered, the bit error rate (BER) is constant for a given
G-SNR regardless of the geometric signal power and the
geometric noise power.

Based on the above derivations, we next use numerical eval-
uations to compare the BER of all three systems. We show that,
as expected, system B with indistinguishable particles exhibits
the highest BER, while system A achieves the lowest BER.
This indicates that time-synchronized transmission over MT
channels, i.e. Modulation A, works better than the other two

modulations considered. We further show that by adjusting the
diffusion coefficients of the information particles in system C,
which is an asynchronous transmission, the BER can approach
the BER of system A, where full synchronization is assumed.
However, this comes at the cost of added system complexity
where both the transmitter and receiver must be capable of
transmitting and detecting two distinguishable particles.

The rest of this paper is organized as follows. In Section II
we present the three timing-based modulation techniques, and
derive an additive noise system model for each of them. In
Section III we focus on the diffusion-based propagation and
derive the PDF for the additive noise term for each system. In
Section IV, binary communication is studied, and the optimal
detectors are derived. The geometric power of the noise and
the G-SNR of each system are derived in Section V. Numerical
BER evaluations of the proposed modulation techniques are
presented in Section VI, and concluding remarks are provided
in Section VII.

Notation: We denote the set of real numbers by R, and the
set of positive real numbers by R+. Other than these sets,
we denote sets with calligraphic letters, e.g., T . We denote
random variables (RV)s with upper case letters, e.g., X and
Y , and their realizations with the corresponding lower case
letters, e.g., x and y. We use fY (y) to denote the PDF of a
continuous RV Y on R, fY |X(y|x) to denote the conditional
PDF of Y given X , and FY (y) and FY |X(y|x) to denote the
corresponding cumulative distribution functions (CDF). We
use ϕX(x) to denote the characteristic function of the RV
X and we use the notation X d

= Y to denote the equality in
distribution, i.e., X has the same PDF as Y . We use | · | to
denote the absolute value, j ,

√
−1 to denote the imaginary

number, and <{z} to denote the real part of the complex
number z. Finally, erfc (·) is used to denote the complementary
error function given by erfc(x) = 2√

π

∫∞
x
e−u

2

du.

II. SYSTEM MODELS

In this section we present three different timing-based
modulation techniques, which results in three different MT
system models. Note that there are no unified channel models
for all possible modulation schemes in molecular commu-
nication, and typically each modulation yields a different
channel model. To develop our model, we make the following
assumptions about the system:
A1) The transmitter perfectly controls the release time of

each information particle, and the receiver perfectly
measures the arrival times of the information particles.
Furthermore, the transmitter and the receiver are perfectly
synchronized in time, when synchronization is required
by the modulation scheme.

A2) Any information particle that arrives at the receiver is
absorbed and hence is removed from the propagation
medium.

A3) All information particles propagate independently of each
other, and their trajectories are random according to an
independent and identically distributed (i.i.d.) random
process. This is a fair assumption for many different
propagation schemes in molecular communication such
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Fig. 1. Summary of the System models corresponding to each modulation
scheme. System A: a synchronized MT, system B: an asynchronous MT with
indistinguishable information particles, and system C: an asynchronous MT
with distinguishable information particles

as diffusion in dilute solutions, i.e., when the number of
particles released is much smaller than the number of
molecules of the solutions.

A4) There is no inter-symbol interference (ISI) between con-
secutive channel uses.1 In practice this assumption can be
satisfied if the time between consecutive channel uses is
large enough or if chemical reactions are used to dissipate
the particles [38].

Note that these assumptions are typical in the study of molec-
ular communication systems.

The first MT system that we consider is the one proposed
in [9], [19], where the information is encoded in the release
timing of a single information particle. Let Tx ∈ T ⊆ R+ be
the release time of the information particle at the transmitter.
In this scheme, the information is modulated onto the release
time itself. The released particle is then transported from
the transmitter to the receiver, where the transport process is
random. Let Ty be the time of arrival at the receiver. Then we
have

Ty = Tx + Tn, (1)

where Tn is the random propagation delay of the information
particle, which is the noise term in this channel. One of the

1In [25] we study communication over DBMT channels in the presence of
ISI.

main challenges of this modulation scheme is the need for
synchronization between the transmitter and the receiver. In
this work, whenever system A is used we assume that the
transmitter and the receiver are perfectly synchronized.

To overcome this synchronization challenge, we propose
two new modulation schemes in which information is mod-
ulated on the time duration between two consecutive releases
of information particles. The receiver decodes the information
from the time between the arrivals of two molecules. Note
that in this case synchronization between the transmitter and
the receiver is not required. Two cases are possible: either
the two released information particles are indistinguishable
at the receiver, or the two released information particles are
distinguishable at the receiver.

We first consider the case where both information particles
are indistinguishable. Without loss of generality, let Tx1 be
the release timing of the first information particle and let Tx2

be the release timing for the second information particle, with
Tx2

> Tx1
. Thus, the information is encoded in Lx = Tx2

−
Tx1 . Using (1), the system model for this modulation scheme
is given by:

|Ty2 − Ty1 | = |Tx2 − Tx1 + Tn2 − Tn1 |,
Ly = |Lx + Ln|, (2)

where Ln = Tn2
−Tn1

is the random noise term in this system,
and Tn2 and Tn1 are the random propagation delays for the
first and the second particles as in (1). Note that the absolute
value in the system formulation is due to the fact that both
information particles are indistinguishable, and therefore the
receiver can observe only the absolute difference of arrival
times.

The last modulation scheme uses the time between releases
of two distinguishable information particles (i.e., two different
particle types) to encode information. Let T ax be the release
timing of the type-a information particle and let T bx be the
release timing of the type-b information particle. We assume
that the information is encoded in Zx = T bx − T ax . Unlike (2)
where Lx is always positive, Zx can be positive or negative
depending on the order that the type-a and type-b information
particles are released. Using (1), the system model for this
scheme is given by:

T by − T ay = T bx − T ax + T bn − T an ,
Zy = Zx + Zn, (3)

where Zn = T bn − T an is the random additive noise term
in this system, and T bn and T an are the random propagation
delays for the type-a and type-b particles as in (1). Again,
no synchronization is required between the transmitter and
receiver. Fig. 1 summarizes all three modulation techniques.

Note that the proposed modulation schemes and their corre-
sponding system models could be applied to any type of prop-
agation model through the medium as long as Assumptions
A1)-A4) are not violated. In the next section, we derive the
distribution of the noise terms for the proposed MT systems,
when diffusion propagation is used for particle transport.
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III. NOISE MODELS FOR DBMT SYSTEMS

In the rest of this work we focus on DBMT systems where
diffusion is used for particle transport. In particular, in this
section we derive the PDF of the noise terms Tn, Ln, and
Zn for DBMT systems in (1)-(3), and discuss some of the
properties of these RVs.

A. System A

To specify the random additive noise term Tn in system A,
we define a Lévy-distributed RV as follows.

Definition 1 (Lévy Distribution): Let the RV X be Lévy-
distributed with location parameter µ and scale parameter c
[26]. Then its PDF is given by:

fX(x;µ, c) =


√

c
2π(x−µ)3 exp

(
− c

2(x−µ)

)
, x > µ

0, x ≤ µ
, (4)

its characteristic function is given by:

ϕ(t;µ, c) = exp
(
jµt−

√
−2jct

)
, (5)

and its CDF is given by:

FX(x;µ, c) =

erfc

(√
c

2(x−µ)

)
, x > µ

0, x ≤ µ
. (6)

Throughout the paper, we use the notation X ∼ L (µ, c) to
indicate a Lévy RV with parameters µ and c.

Assumption A2) implies that the distribution of Tn is the
distribution of the first hitting time (first arrival at the receiver)
of a particle transported via diffusion without flow. In previous
works, it was shown that the first hitting time for a diffusion
channel with constant drift (i.e., flow) in 1-dimensional space
follows the inverse Gaussian distribution [19]. In this work,
we consider the pure diffusion channel with no flow. Let d
denote the distance between the transmitter and the receiver,
and D denote the diffusion coefficient of the information
particles in the propagation medium. Following along the lines
of the derivations in [19, Sec. II], and using [39, Sec. 2.6.A],
it can be shown that for 1-dimensional pure diffusion, the
propagation time of each of the information particles follows
a Lévy distribution, and therefore the noise in system A is
distributed as Tn ∼ L (0, cA) with cA = d2

2D . Similarly, the
conditional PDF P (Ty|Tx) ∼ L (Tx, cA). The PDF and CDF
of the standardized (i.e., with µ = 0 and cA = 1) Lévy noise
are depicted in Figs. 2 and 3, respectively.

Remark 1: In [40] it is shown that for an infinite, three-
dimensional homogeneous medium without flow, and a spher-
ically absorbing receiver, the first arrival time follows a scaled
Lévy distribution. Therefore, the results presented in this paper
can be extended to 3-D space by simply introducing a scalar
multiple in the noise distribution.

B. System B

To find the noise distribution of the system in (2), we first
discuss the class of probability distributions known as stable

distributions [26], [41]. Note that the Lévy distribution belongs
to this class.

Definition 2 (Stable Distributions): An RV X has a stable
distribution if for two independent copies X1 and X2, and
positive constants a1, a2, a3 ∈ R+ and a4 ∈ R, the following
holds:

a1X1 + a2X2
d
= a3X + a4.

Stable distributions can also be defined via their character-
istic function.

Definition 3 (Characteristic Function of a Stable Distribu-
tion): Let −∞ < µ <∞, c ≥ 0, 0 < α ≤ 2, and −1 ≤ β ≤ 1.
Further define:

Φ(t, α) ,

{
tan

(
πα
2

)
, α 6= 1

− 2
π log(|t|), α = 1

.

Then, the characteristic function of a stable RV X , with lo-
cation parameter µ, scale parameter c, characteristic exponent
α, and skewness parameter β, is given by:

ϕ(t;µ, c, α, β) = exp [jµt− |ct|α(1− jβ sgn(t)Φ(t, α))] .
(7)

In the following, we use the notation S (µ, c, α, β) to
represent a stable distribution with the parameters µ, c, α, and
β. Only the PDFs of three classes of stable distributions are
known to have closed-form expressions in terms of elementary
functions: the Gaussian distribution with α = 2 (the value of
β does not matter in this case and can be assumed to be zero),
the Lévy distribution with α = 1

2 and β = 1, and the Cauchy
distribution with α = 1 and β = 0. Generally, the parameters
α and β define a subclass within the stable distribution
family. Next, we introduce some important properties of stable
distributions [26].

Property 1: Let X ∼ S (µ, c, α, β), and define Y = X−µ
c .

Then f(x)dx = f(y)dy, and Y is called the standard form of
X .

Property 2: Let X̃ ∼ S (0, 1, α, β) be the standard form of
a stable RV with parameters α and β. Then the PDF and the
CDF of any RV X ∼ S (µ, c, α, β) can be calculated as

fX(x) =
fX̃
(
x−µ
c

)
c

, (8)

FX(x) = FX̃(x−µc ). (9)

Using this property, the standard PDF and CDF of a stable RV
can be used to calculate probabilities involving non-standard
stable RVs just like the way the standard Gaussian PDF and
CDF are used to calculate probabilities involving non-standard
Gaussian RVs.

Property 3: The PDFs of stable RVs with β = 0 are
symmetric around µ.

Property 4: If X is a standardized (i.e., with µ = 0 and
c = 1) stable RV with parameters 0 < α < 2 and β, then as
x→∞,

P (X > x;α, β) ≈ 1 + β

πxα
Γ(α) sin

(
απ

2

)
. (10)

Remark 2: Using this property it can be shown that for a
stable distributed RV X with parameter α, the moments of
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Fig. 2. The probability density function of different standardized noise terms.

order greater than α (i.e., E[|X|α]) are infinite. Therefore, all
stable distributions with α < 2 have infinite variances, and all
stable distributions with α < 1 have infinite mean values.

With these definitions we now model the noise term Ln in
(2).

Theorem 1: Let cB = 2d2

D , where d is the distance between
the transmitter and the receiver and D is the diffusion co-
efficient of the information particles. Then, the characteristic
function of the noise term Ln is given by:

ϕ (t; cB) = exp
[
−
√
cB|t|

]
,

which implies that Ln ∼ S (0, cB,
1
2 , 0).

Proof: We know that Ln = Tn2+(−Tn1) with Tn2 , Tn1 ∼
S (0, cA,

1
2 , 1), where cA = d2

2D . Since Tn1 and Tn2 are
independent, the characteristic function for Ln is given by

ϕLn(t) = ϕTn2
(t)ϕTn1

(−t) (11)

= exp
[
−
√
|cAt|(1− j sgn(t))

]
×

exp
[
−
√
|cAt|(1 + j sgn(t))

]
(12)

= exp
[
−
√
|4cAt|

]
. (13)

Thus, using the expression in (7) we conclude that Ln ∼
S (0, cB,

1
2 , 0).

Remark 3: If the same type of particle is used in system A
and system B, and the distance between the transmitter and
the receiver is the same, then the scale parameter c in the
noise term for system B is four times greater than the scale
parameter for system A, i.e., cB = 4cA.

To find an expression for the PDF of the noise term Ln in
(2), we first define the following functions. Let K(a, b) and
L(a, b), a ∈ R, b ∈ R+, be the complex and imaginary Voigt
functions [42], given by :

K(a, b) ,
1√
π

∫ ∞
0

exp(−t2/4) exp(−bt) cos(at)dt, (14)
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Fig. 3. The cumulative distribution function of different standardized noise
terms.

and

L(a, b) ,
1√
π

∫ ∞
0

exp(−t2/4) exp(−bt) sin(at)dt. (15)

The Voigt functions, which are widely used in the fields of
physics, astronomy, and chemistry, can be computed efficiently
and quickly numerically [34], [35]. Moreover, for some special
cases (e.g., b � 0), analytical approximations of these func-
tions exist in terms of elementary functions [36]. We further
define:

G(u) ,
1√

8π|u|3

[
K

(
− 1√

8|u|
, 1√

8|u|

)
+L

(
− 1√

8|u|
, 1√

8|u|

)]
. (16)

The PDF of Ln is stated in the following theorem:
Theorem 2: Let Ln ∼ S (0, cB,

1
2 , 0). Then the PDF of Ln

is given by:

fLn(`n) =

{
1
cB
G
(
`n
cB

)
, `n 6= 0

2
cBπ

, `n = 0
. (17)

Proof: The proof is provided in Appendix A.
In this work, we do not provide an expression for the

CDF of the noise terms FLn(`n), and it would be difficult
to integrate (2) to obtain the CDF. However, the CDF can
be calculated numerically using the methods described in [43,
Sec. 3]. Moreover, tables of the standardized CDF could be
used to calculate probabilities involving the noise term. Figs.
2 and 3 depict the PDF and CDF for the standardized noise
term Ln with cB = 1.

C. System C

We first note that the noise Zn given in (3) is fundamentally
different from the noise Ln in system B since the two
different types of information particles may have different
diffusion coefficients. Let Da be the diffusion coefficient of
information particle a, and Db be the diffusion coefficient for
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the information particle b. We define cC , d2(
√
Da+

√
Db)

2

2DaDb
,

βC ,
√
Da−

√
Db√

Da+
√
Db

. Furthemore, without loss of generality, we
assume that particle a is released before particle b. We now
model the noise term Zn in (3).

Theorem 3: The characteristic function for the noise term
Zn is given by:

ϕ (t; cC, βC) = exp
[
−
√
cC|t| (1− jβC sgn(t))

]
,

which implies that Zn ∼ S
(
0, cC,

1
2
, βC
)
.

Proof: First, note that Zn = Tnb + (−Tna) with
Tna , Tnb ∼ S (0, ci,

1
2 , 1), where ci = d2

2Di
for i ∈ {a, b}.

Since Tna and Tnb are independent, the characteristic function
of Zn is given by:

ϕZn(t) = ϕTnb (t)ϕTna (−t) (18)

= exp
[
−
√
cb
√
|t|(1− j sgn(t))

]
×

exp
[
−
√
ca
√
|t|(1 + j sgn(t))

]
(19)

= exp
[
−
√
|t|(
√
cb +

√
ca − j sgn(t)(

√
ca −

√
cb))

]
(20)

= exp
[
−(
√
cb +

√
ca)
√
|t|(

1− j sgn(t)

√
ca −

√
cb√

cb +
√
ca

)]
(21)

= exp

[
−d(
√
Da +

√
Db)√

2DaDb

√
|t|(

1− j
√
Da −

√
Db√

Da +
√
Db

sgn(t)

)]
.

(22)

Thus, using the expression in (7) we conclude that Zn ∼
S
(
0, cC,

1
2 , βC

)
.

Remark 4: When the diffusion coefficients of the two
particles are approximately the same, i.e., Da ≈ Db, the
distribution of Zn approaches the distribution Ln (i.e. βC ≈ 0).
On the other hand, when Da � Db or Da � Db, then
βC ≈ ±1 which implies that Zn is Lévy distributed. Therefore,
when one information particle has a much higher diffusion
coefficient than the other, system C can be reduced to system
A with the added benefit that no synchronization is required
between the transmitter and the receiver. However, this comes
at a cost of: 1) Using two particles instead of one; and 2) The
resulting system A has a scaling parameter that corresponds
to the smaller diffusion coefficient.

To derive the PDF of Zn we first define the following two
functions:

G+(u, β) ,
1√

8π|u|3

[
(1 + β)K

(
− 1+β√

8|u|
, 1−β√

8|u|

)
+(1− β)L

(
− 1+β√

8|u|
, 1−β√

8|u|

)]
, (23)

G−(u, β) ,
1√

8π|u|3

[
(1− β)K

(
1−β√

8|u|
, 1+β√

8|u|

)
+(1 + β)L

(
1−β√

8|u|
, 1+β√

8|u|

)]
, (24)

where K(a, b) and L(a, b) are the real and imaginary Voigt
functions given in (14) and (15), respectively. The PDF of Zn
is now stated in the following theorem:

Theorem 4: Let Zn ∼ S (0, cC,
1
2 , βC). Then the PDF of

Zn is given by:

fZn(zn) =


1
cC
G+

(
zn
cC
, βC

)
, zn > 0

2(1−β2)
cCπ(1+β2)2 , zn = 0

1
cC
G−

(
zn
cC
, βC

)
, zn < 0

. (25)

Proof: The proof is provided in Appendix B.
Again, we do not provide an expression for the CDF of

the noise terms FZn(zn), instead we note that it can be
numerically calculated using the methods of [43, Sec. 3]. Figs.
2 and 3 depict the PDF and CDF for the standardized noise
term Zn with cC = 1 and four different values for βC. Note
that for βC = 0 the distribution and the density functions of the
noise Zn in System C are the same as the noise Ln in system
B. This is due to the diffusion coefficient of type-a and type-
b particles being equal, which means that both particle types
have the same random propagation delay characteristics.

IV. OPTIMAL DETECTION IN BINARY DBMT SYSTEMS

In this section, we consider equiprobable binary transmis-
sion over the three different DBMT systems. Using the noise
models developed in the previous section, we characterize the
optimal detection rule for each modulation.

A. System A

For system A, w assume that the transmission symbols are
Tx ∈ {0,∆}, where ∆ > 0. Using Property 2, we write the
distribution of the output probability, conditioned on the input,
in terms of the standard Lévy distribution T̃n ∼ L (0, 1) as
follows:

fTy|Tx(ty|Tx = 0) = fTn(ty) =
fT̃n(ty/cA)

cA
, (26)

fTy|Tx(ty|Tx = ∆) = fTn(ty −∆) =
fT̃n
(
(ty −∆)/cA

)
cA

.

(27)

As the two transmitted symbols are equiprobable, the de-
tector that minimizes the probability of error is the maximum
likelihood (ML) detector. In this work we assume both the 0-
bit and the 1-bit are equiprobable and apply the ML detector.
In this case, the likelihood ratio is given by:

ΛA(ty) =
fTy|Tx(ty|Tx = 0)

fTy|Tx(ty|Tx = ∆)
, (28)

and optimal detection can be done by a comparison of the log
likelihood ratio (LLR) to zero, i.e.,

log(ΛA(ty))
Tx = 0

≷
Tx = ∆

0. (29)

Note that the proof of the existence of the optimal threshold
value is straightforward using the fact that stable distributions
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Fig. 4. The ML optimal decision threshold for the three systems.

are unimodal [41, Theorem 2.7.6], and that for the noise term
Tn the mode is at c/3. Therefore, there exists a threshold
∆ < thA ≤ c/3 + ∆, such that ΛA(t) > 1 for t < thA and
ΛA(t) ≤ 1 for t ≥ thA [44], [45]. The top plot in Figure 4
shows the optimal threshold for the case when ∆ = 1, the
distance is d = 1 and the diffusion coefficient is D = 0.5.

The probability of error for system A is now given by:

PAe = P (Tx = 0)Pr(ty > thA|Tx = 0)

+ P (Tx = ∆)Pr(ty ≤ thA|Tx = ∆), (30)
= 0.5Pr(tn > thA) + 0.5Pr(tn ≤ thA −∆) (31)

= 0.5[1− FT̃n( thA
cA

) + FT̃n( thA−∆
cA

)], (32)

where FT̃n(t) is the CDF of a standard Lévy RV.

B. System B

For system B we assume that the input is Lx ∈ {0,∆},
where Lx = 0 represents two particles released simultane-
ously, while Lx = ∆ represents two particles released ∆
seconds apart. Let L̃n ∼ S (0, 1, 1

2 , 0) be the standard form
of the noise term in (2). The PDF of the output Ly , given the
input Lx, is provided in the following proposition:

Proposition 1: The system output Ly , given the system input
Lx, has the PDF:

fLy|Lx(`y|Lx = 0) =


2fL̃n

( `y
cB

)
cB

`y > 0
2

(cBπ) `y = 0

0 `y < 0

, (33)

fLy|Lx(`y|Lx = ∆) =


fL̃n

( `y−∆
cB

)
+fL̃n

(−`y−∆
cB

)
cB

`y > 0

fL̃n

(
∆
cB

)
cB

`y = 0

0 `y < 0

.

(34)

Proof: It is clear from the system definition that when
Ly < 0 the PDF is 0 (i.e. the time between two arrival times

is not negative). When Ly = 0, we have fLy|Lx(0|Lx = 0) =
fLn(0), and fLy|Lx(0|Lx = ∆) = fLn(∆). To derive the PDF
value for Ly > 0, we use the fact that the CDF of Ly given
Lx = x ≥ 0 can be obtained from the CDF of L̃n as

FLy|Lx(`y|Lx = x) = Pr(Ly ≤ `y|Lx = x)

= Pr(|x+ Ln| ≤ `y)

= Pr(−`y ≤ x+ Ln ≤ `y)

= Pr(
−`y−x
cB

≤ L̃n ≤ `y−x
cB

)

= FL̃n
( `y−x

cB

)
− FL̃n

(−`y−x
cB

)
.

By differentiating with respect to `y , and setting x = 0 and
x = ∆, we obtain (33) and (34), respectively.

Similarly to (28), the likelihood ratio for the ML detector
for system B is given by:

ΛB(`y) =
fLy|Lx(`y|Lx = 0)

fLy|Lx(`y|Lx = ∆)
. (35)

The following theorem states that, just like in the case of
system A, the ML detector can be implemented by comparing
log(ΛB(`y)) to zero:

Theorem 5: There exists a fixed threshold thB > ∆
2 such

that the ML detector in the case of system B is given by:

log(ΛB(`y))
Tx = 0

≷
Tx = ∆

0. (36)

Proof: The proof is provided in Appendix C.
The middle plot in Figure 4 depicts the optimal threshold for
the case when ∆ = 1, the distance is d = 1 and the diffusion
coefficient is D = 0.5. Since the closed-form expression
for the CDF of the noise term is unknown, this threshold
is calculated numerically. Finally, the probability of error for
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binary communication over system B is given by:

PBe = P (Lx = 0)Pr(Ly > thB|Lx = 0)

+ P (Lx = ∆)Pr(Ly ≤ thB|Lx = ∆),

= 0.5(Pr(Ln > thB) + Pr(Ln ≤ −thB))

+ 0.5Pr(−thB −∆ ≤ Ln ≤ thB −∆),

= 0.5(Pr(L̃n >
thB
cB

) + Pr(L̃n ≤ − thB
cB

))

+ 0.5Pr(−thB−∆
cB

≤ L̃n ≤ thB−∆
cB

),

= FL̃n
(
thB
cB

)
+0.5

(
FL̃n

(
thB−∆
cB

)
−FL̃n

(
thB+∆
cB

))
. (37)

Thus, similarly to the case of system A, the probability of
error can be calculated using the standard form of the noise
term.

C. System C

Recall that for system C the two particles are distinguish-
able, and Zx = Txb − Txa is the time interval between the
releases of particles b and a. Here, we assume information is
encoded in the order of release. The input Zx ∈ {−∆,∆} is
now given by:

Zx =

{
∆, Txa = 0, Txb = ∆

−∆, Txb = 0, Txa = ∆
. (38)

Note that similarly to systems A and B, the information is
encoded over the time period ∆.

Let Z̃n ∼ (0, 1, 1
2 , βC) be the standard form of the noise

term in (3). Then the PDF of the output given the input is
given by

fZy|Zx(zy|Zx = −∆) =
fZ̃n
( zy+∆

cC

)
cC

(39)

fZy|Zx(zy|Zx = ∆) =
fZ̃n
( zy−∆

cC

)
cC

. (40)

Again, to minimize the probability of error at the receiver, the
ML detector is used. Let thC be the optimal ML detection
threshold for this system. It is easy to see that this threshold
exists for system C since stable distributions are unimodal and
the two PDFs are shifted versions of each other. The bottom
plot in Figure 4 shows the optimal threshold for the case when
∆ = 1, the distance is d = 1 and the diffusion coefficients are
Da = 1 and Db = 0.5. The probability of error is now given
by:

PCe = P (Zx = −∆)Pr(zy > thC|Zx = −∆)

+ P (Zx = ∆)Pr(zy ≤ thC|Zx = ∆),

= 0.5Pr(zn > thC + ∆) + 0.5Pr(zn ≤ thC −∆)

= 0.5[1− FZ̃n(thC + ∆) + FZ̃n(thC −∆)], (41)

which can be calculated using the CDF of the standard form
of the noise term.

V. GEOMETRIC POWER AND G-SNR

We first note that all stable distributions, apart from the
case α = 2, have infinite variance, and all stable distributions
with α ≤ 1 also have infinite mean. In fact, this statement

can be generalized to moments of order p ≤ α, see [37].
Therefore, the conventional notion of power, which is based on
the variance of a signal, is not informative in the case of stable
RVs with α < 2 as, regardless of the specific distribution,
the conventional power is infinity. In this section we use a
more generalized definition of power, the geometric power, as
proposed in [37, Section III]. This definition uses zero-order
statistics, i.e., it is based on logarithmic “moments” of the
form E[log |N |].

Definition 4 (Geometric Power): The geometric power of
the RV N is given by:

S0(N) , eE[log |N |]. (42)

In the following we use the terms noise power and the
geometric power of the noise interchangeably.2

In [37, Prop. 1], an expression for the geometric power of a
symmetric stable distribution is presented. Property 3 implies
that symmetric stable distributions are in fact S (0, c, α, 0).
This expression can therefore be used to calculate the geo-
metric power of the noise term LN in system B. Yet, this
expression is not applicable for the noise terms of systems A
and C in which β 6= 0. The following theorem characterizes
the geometric power of almost all stable distributions:

Theorem 6: Let N ∼ S (0, c, α, β), where α 6= 1, or α = 1
and β = 0. Then, the geometric power of N is given by:

S0(N) = cG(1/α−1)
γ

(
1 + β2 tan2(πα2 )

)1/(2α)
, (43)

where Gγ = eγ , and γ ≈ 0.5772 is the Euler’s constant [46,
Ch. 5.2].

Proof: The proof is provided in Appendix D.
Remark 5: For the systems considered in this paper, since

α = 1
2 , the noise power simplifies to:

S0(N) = cGγ
(
1 + β2

)
. (44)

Note that in this case, the noise power increases with respect
to β (the degree of skewness) and c (the scale parameter).

We now define the geometric SNR (G-SNR) as in [37,
Section III]:

Definition 5 (Geometric Signal-to-Noise Ratio): Let X be
the input signal in an additive-noise channel with a random
noise N . Then the G-SNR is defined as:

G-SNR ,
1

2Gγ

(
Xmax −Xmin

S0(N)

)2

, (45)

where Xmax and Xmin are the maximum and minimum
admissible values for the channel input X . The normalizing
term 1

2Gγ
is used to ensure that the G-SNR corresponds to

the standard SNR in the case of an additive Gaussian noise
channel.

Using this definition and Theorem 6, the G-SNR for systems
A and C is defined as follows:

G-SNRA =
1

2Gγ

(
∆

2cAGγ

)2

, (46)

G-SNRC =
1

2Gγ

(
2∆

cCGγ(1 + β2
C)

)2

. (47)

2Note that the definition of geometric power/SNR we introduce here is
different from the one widely used in RF communications.
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Fig. 5. This plot shows that for a constant G-SNR, the BER is constant. For
each point, the parameter c of the noise distribution is calculated using the
corresponding value for ∆ such that the G-SNR= 1.

Remark 6: Note that system B involves an absolute value
operation, thus, the G-SNR of system B cannot be obtained
based on the techniques used to derive the G-SNR for systems
A and C. Since the absolute value operation can only degrade
the detection performance, calculating the G-SNR of the
system Ly = Lx + Ln can serve as an upper bound on the
G-SNR of system B. This upper bound is given by:

G-SNRB ≤ G-SNRub
B =

1

2Gγ

(
∆

cBGγ

)2

. (48)

This implies that the BER of the ML detector for system B
is higher than the BER of the ML detector for the system
Ly = Lx + Ln, as indicated in Section VI.

Remark 7: When the diffusion coefficient and the distance
between the transmitter and the receiver are the same, the G-
SNR of system A is four times larger than the G-SNR of
system B since cB = 4cA. This implies that on top of the fact
that two information particles are released in system B while
only a single particle is released in system A, the gain from
synchronization is a factor of 1

4 in the noise geometric power.
Remark 8: For system C let r = Da/Db be the ratio of the

diffusion coefficient of the two information particles. Then
the noise parameters can be written as cC = d2(

√
r+1)2

2rDb
and

βC =
√
r−1√
r+1

. Next, assume that the diffusion coefficient Db

is fixed, and the diffusion coefficient of Da can be changed.
In this case the noise geometric power is proportional to 1

r ,
which decreases as r increases. This also implies that the G-
SNR increases with r. From the expression for βC and cC

we observe that βc → 1 and cC → d2

2Db
, when r → ∞.

Thus, in this case, system C reduces to system A, while
no synchronization is required between the transmitter and
the receiver. Yet, this comes at a cost of using two different
information particles. Note that this cost is captured in the G-
SNR expression since the geometric power of the transmitted
signal in system C is four times that of systems A and B, which
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Fig. 6. This plot shows that for a constant G-SNR, the BER is constant. For
each point, the parameter c of the noise distribution is calculated using the
corresponding value for ∆ such that the G-SNR= 10.

can result in as much as 4 times improvement in G-SNR.

VI. NUMERICAL EVALUATION

We start this section by evaluating the affects of the G-
SNR, provided in (45), on the BER performance of the three
modulation schemes. In the additive white Gaussian noise
channel the BER of the ML detector is only a function of SNR,
namely, for a fixed SNR, the individual values of the signal
power and the noise power do not affect the BER. To evaluate
if this property also holds for the three MT systems, we
consider system C which can be specialized to both systems
A and B using different values of the parameter βC, see (46)–
(47). Thus, we evaluate if a constant BER is observed for a
fixed value of G-SNR.

Figs. 5 and 6 depict BER versus ∆ for two values of G-
SNR: 1 and 10. In these plots, the x-axis corresponds to the
values of ∆. For each point in the plot, the value of the noise
parameter cC is calculated such that G-SNR is either 1 (Figure
5) or 10 (Figure 6). The BER is then numerically calculated
using these values based on (41). It can clearly be observed
that the BER is constant for a given G-SNR regardless of the
value of ∆ and cC. It can further be observed that the BER
decreases as βC → 1, which is in agreement with Remark 8.

Figure 7 depicts the BER versus G-SNR for the different
modulation techniques. For system C, five different values of
βC = 0, 0.25, 0.5, 0.75, 0.95 are considered. The asynchronous
scheme in system B with indistinguishable particles achieves
the highest BER, while system A, which assumes perfect syn-
chronization, achieves the lowest BER. The gap between these
can be thought of as the cost of having no synchronization.
Note that in system A, a single particle is released, while in
system B two particles are released.

For system C it can be observed that by using two distin-
guishable particles, the BER improves compared to system
B. Note that when βC = 0 the noise distribution is the
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Fig. 7. BER versus G-SNR in dB for each modulation scheme.

same as that in system B. In this case, when the dispersion
parameter c is the same for both systems, the G-SNR of
system C is four times larger than G-SNRub

B in (48). Yet,
Figure 7 indicates that even for βC = 0 the BER of system
C is lower than the BER of system B. This demonstrates the
destructive effect of the absolute value operation as indicated
in Remark 6. Finally, we observe that as βC increases the
BER of system C decreases, while when βC → 1 the BER
of system C approaches the BER of system A. In this case,
asynchronous communication is possible with the same BER
performance as synchronized communication at the cost of
using two distinguishable particles.

We conclude the numerical evaluations with a case study.
We consider a DBMT system where the distance between the
transmitter and the receiver is d = 20 µm. Assume that the
receiver is capable of detecting insulin molecules, which has
a diffusion coefficient of DI = 150 µm2/s [3]. From these
values the noise parameters cA and cB can be calculated for
the modulation techniques represented by systems A and B.
For system C, we consider six different particles as candi-
dates for the second distinguishable particle. These particles
are assumed to have diffusion coefficients ranging from 30
µm2/s (e.g., diffusion coefficient of DNA) to 930 µm2/s (e.g.,
diffusion coefficient of glycerol).

Figure 8 depicts the results. Again it can be observed
that the asynchronous modulation scheme in system B with
indistinguishable particles has the highest BER. Note that
even the modulation scheme in system C where the diffusion
coefficient of the second particle is one fifth of the diffusion
coefficient of the particles used in system B (i.e. 30 µm2/s)
has lower BER. For the modulation technique in system C,
as the diffusion coefficient of the second particle increases,
the BER decreases. The modulation in system A achieves
the best BER performance, and this shows that transmitter-
receiver synchronization could have a considerable effect on
BER. Table I quantifies the BER for each case.
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∆ 1 25 50 75 100
System A 0.3590 0.0912 0.0648 0.0530 0.0460
System B 0.4778 0.2346 0.1799 0.1523 0.1348

System C (D = 30) 0.4592 0.2202 0.1687 0.1428 0.1263
System C (D = 150) 0.4073 0.1535 0.1145 0.0957 0.0841
System C (D = 930) 0.3533 0.1109 0.0812 0.0674 0.0589

TABLE I
THE BER OF DIFFERENT MODULATIONS IN THE CASE STUDY FOR

DIFFERENT VALUES OF ∆. FOR THE MODULATION SCHEME IN SYSTEM C
THE TERM IN THE PARENTHESIS IS THE DIFFUSION COEFFICIENT OF THE

SECOND PARTICLE.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we considered two new asynchronous timing-
based modulation techniques based on the time between
release of two similar information particles, and the time
between release of two different information particles. For
evaluation, we compared the performance of these systems
to the synchronized modulation based on the time of release
of information particles. We showed that the three modulation
techniques can be modeled as systems with an additive noise
term, where for diffusion-based propagation, the noise terms
are stable distributed. For the asynchronous systems, we
derived the PDF of the additive noise in terms of the Voigt
functions, which can be calculated efficiently and in some
special cases be approximated using elementary functions.
Using these PDFs we then characterized the ML detectors
for each system. Since stable distributions, with the exception
of the Gaussian distribution, have infinite variance, we used
geometric power as a measure of strength of the noise. Using
this approach, we derived the G-SNR for each modulation
scheme for comparison. Numerical evaluations show that for
a constant G-SNR the BER is constant. Therefore, the G-SNR
in DBMT channels plays a similar role as the SNR in the
additive Gaussian noise channels. Finally, we showed that, as
expected, synchronization has a considerable effect on BER,
where the first modulation scheme achieves the lowest BER.
Moreover, we showed that it is possible to achieve a similar
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BER asynchronously if two distinguishable particles are used
per bit.

As part of future work, we will explore extending the
results to the case where multiple information particles are
released simultaneously instead of one. Note that some of our
current ongoing work has shown that simultaneously releasing
multiple particles can improve the performance of the first
system significantly [24], [45]. We would like to extend these
results to the asynchronous systems presented in this paper
using order statistics.

APPENDIX A
PROOF OF THEOREM 2

We use Property 2, and find an expression for the standard-
ized distribution with cB = 1. Then the PDF for any value of
cB can be calculated using (8). Let X ∼ S (0, 1, 1

2 , 0) be a
standardized stable RV with parameters α = 1

2 and β = 0.
Then the PDF of X is given by [47, Eq. (7.1)]:

f(x; 1/2, β) = <
{ z

πx
[
√
πe−z

2

− 2jD(z)]
}
, (49)

where

D(z) = e−z
2

∫ z

0

et
2

dt (50)

is the Dawson’s Integral [46, Eq. (7.2.5)], and

z =
1 + β − j(1− β)

2
√

2x
. (51)

It is possible to rewrite (49) in terms of the complex error
function, also known as Faddeeva function or the Kramp
function [46, Eq. (7.2.3)]:

w(z) = e−z
2

(
1 +

2j√
π

∫ z

0

et
2

dt

)
= e−z

2

erfc(−jz). (52)

Using [46, Eq. (7.5.1)]:

D(z) = 0.5j
√
π(e−z

2

− w(z)), (53)

and the property w(−z) = 2e−z
2 −w(z) , we rewrite (49) as:

f(x; 1/2, β) = <
{

z√
πx
w(−z)

}
. (54)

One of the benefits of writing the PDF in terms of the complex
error function is that there are a large body of works that
considered calculating it numerically. Moreover, if z = a+jb,
for b > 0 the complex error function can be represented by
its real and imaginary parts as [33, Sec. 1]:

w(a+ jb) = K(a, b) + jL(a, b), b > 0, (55)

where K(a, b) and L(a, b) are the real and imaginary Voigt
functions given in (14) and (15), respectively.

Using Property 3, the PDF of X is symmetric. Hence, the
density for X ≥ 0 is sufficient for characterizing the whole
PDF. Since β = 0, when X > 0, we can write z = px − jpx
where px = 1/

√
8x. Substituting (55) in (54), the density of

X , when X ≥ 0, can be written as:

f(x) =

{
1√

8πx3
[K(−px, px) + L(−px, px)] x > 0

2
π x = 0

, (56)

where the value for x = 0 follows from [41, Eq. (2.2.11)].
Finally, the density for X < 0 is obtained using symmetry.
The proof is completed by applying (8).

APPENDIX B
PROOF OF THEOREM 4

We use Property 2, and find an expression for the standard-
ized distribution with cC = 1. Thus, the PDF for any value of
cC can be calculated using (8). Let X ∼ S (0, 1, 1

2 , βC) be the
standardized stable RV with parameters α = 1

2 and βC. Using
(54), and recalling that βC = (

√
Da −

√
Db)/(

√
Da +

√
Db),

we write (51) as z = px − jqx when x > 0, where
px = (1+βC)/(

√
8|x|) and qx = (1−βC)/(

√
8|x|). Similarly,

we write (51) as z = −qx − jpx when x < 0. Using (54) and
the Voigt functions decomposition of the Faddeeva function
(55), the PDF of the standardized distribution is given by:

f(x;βC) =



1√
8πx3

[
(1 + βC)K(−px, qx)

+ (1− βC)L(−px, qx)

]
, x > 0

2(1−β2)
π(1+β2)2 , x = 0

1√
8π|x|3

[
(1− βC)K(qx, px)

− (1 + βC)L(qx, px)

]
, x < 0

,

where, again, the value for x = 0 follows from [41, Eq.
(2.2.11)]. The proof is completed by applying (8).

APPENDIX C
PROOF OF THEOREM 5

We first observe that for `y = 0, fLy|Lx(0|0) >
fLy|Lx(0|∆). This follows from the fact that stable distribu-
tions are unimodal, and the mode of the noise term Ln is
at ` = 0. Therefore, the threshold is located at thB > 0,
and we focus of the case where `y > 0. Note that in
this case, due to the continuity and unimodality of stable
distributions [41, Theorem 2.7.6], both fLy|Lx(`y|Lx = 0) and
fLy|Lx(`y|Lx = ∆) are continuous functions and unimodal.
We now have the following lemma:

Lemma 1: If 0 < `y ≤ ∆
2 , then fLy|Lx(`y|Lx = 0) >

fLy|Lx(`y|Lx = ∆).
Proof: We first consider the system in (2) without the

absolute value: L̃y = Lx + Ln. Here, fL̃y|Lx(l̃y|lx) =

fLn(l̃y− lx). Since stable distributions are unimodal, we have
fL̃y|Lx(l̃y|Lx = 0) > fL̃y|Lx(l̃y|Lx = ∆),∀l̃y < ∆

2 . Using
the expression for the PDF of system (2) in (33)–(34) we
obtain the desired result.

Lemma 2: If `y > ∆
2 , then there exists a point thB

such that for all ∆
2 < `y < thB, fLy|Lx(`y|Lx = 0) >

fLy|Lx(`y|Lx = ∆) and for all `y > thB, fLy|Lx(`y|Lx =
0) ≤ fLy|Lx(`y|Lx = ∆).

Proof: Note that for `y > ∆
2 , fLn(`y) < fLn(`y − ∆).

Moreover, note that fLn(`) is a smooth function and it is
decreasing for ` > 0. Then clearly there exists a thB > ∆

2
such that:



12{
fLn(`y)−fLn(`y −∆)>fLn(`y + ∆)−fLn(`y) `y< thB

fLn(`y)−fLn(`y −∆)≤fLn(`y + ∆)−fLn(`y) `y≥ thB,

(57)

which follows since the slope of fLn(`) for ` > 0 decreases,
reaches a minimum, and then increases. Combining both
Lemmas, the theorem is proved.

APPENDIX D
PROOF OF THEOREM 6

To prove this theorem, we first derive E[|N |s]. We write
this expectation in integral form as:

E[|N |s] =

∫ ∞
−∞
|n|sf(n; 0, c, α, β)dn

(a)
=

∫ ∞
0

nsf(n; 0, c, α, β)dn

+

∫ ∞
0

nsf(n; 0, c, α,−β)dn,

where (a) follows since f(−x; 0, c, α, β) = f(x; 0, c, α,−β)
[26, Proposition 1.11]. Taking the derivative with respect to s
we obtain:

d

ds
E[|N |s] =

∫ ∞
0

ns log nf(n; 0, c, α, β)dn

+

∫ ∞
0

ns log nf(n; 0, c, α,−β)dn.

Further setting s = 0 results in:

d

ds
E[|N |s]

∣∣∣∣
s=0

= E[log(|N |)].

We now define λ , cα
√

1 + β2

cot2(
πα
2 )

, and let

θ , 2 arctan

(
β

cot(πα2 )

)
/(πα).

Using [41, Fact 3, pg. 117], and [41, Theorem 2.6.4] we have
that for N ∼ S (0, c, α, β), α 6= 1,

E[|N |s] = λs/α
cos(π2 θs)Γ(1− s/α)

cos(π2 s)Γ(1− s)
. (58)

By taking the derivative of (58) with respect to s and evalu-
ating the result at s = 0 we obtain:

E[log(|N |)] = log(c) +
1

2α
log

(
1 +

β2

cot2(πα2 )

)
+ (1/α− 1)γ, (59)

where γ is the Euler’s constant [46, Ch. 5.2]. Finally, recalling
that S0(N) = eE[log(|N |)] we conclude the proof.
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